Maximax rearrangement optimization related to a homogeneous Dirichlet problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Optimization problem in multi-homogeneous homotopy method

Multi-homogeneous homotopy continuation method is one of the most efficient approaches in solving all isolated solutions of a polynomial system of equations. Finding the optimal partition of variables with the minimal multihomogeneous Bézout number is clearly an optimization problem. Multi-homogeneous continuation using the optimal partition of variables reduces the computational cost in path t...

متن کامل

Existence Results for a Dirichlet Quasilinear Elliptic Problem

In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.

متن کامل

Domain Applied to a Dirichlet Problem

Here f ∈ L(Ω) , g ∈ H(∂Ω) and Ω is a bounded domain in R with the smooth boundary ∂Ω ( see Figure 1 ). The method of lines for solving Problem I works well if Ω is a rectangular domain since the finite difference solution is expressed explicitly by use of eigenvalues and eigenvectors for the finite difference scheme([BGN70], [Nak65]). But one says that this method seems difficult to be applied ...

متن کامل

Matrices related to Dirichlet series

We attach a certain n × n matrix An to the Dirichlet series L(s) = ∑ ∞ k=1 akk . We study the determinant, characteristic polynomial, eigenvalues, and eigenvectors of these matrices. The determinant of An can be understood as a weighted sum of the first n coefficients of the Dirichlet series L(s). We give an interpretation of the partial sum of a Dirichlet series as a product of eigenvalues. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arabian Journal of Mathematics

سال: 2013

ISSN: 2193-5343,2193-5351

DOI: 10.1007/s40065-013-0083-0